Particle Tracking and Geometry in the MPD.

Near Detector Software workshop

Eldwan Brianne, Tom Junk, Leo Bellantoni, Thomas Campbell, Gavin Davies Fermilab, 24th July 2019

The core component

- Geometry generated with gegede and dunendggd
 - Subdetector/NDHPgTPC_v03.py
- Global geometry structure
 - Construct all sub-components: TPC, PV, ECAL Barrel, ECAL Endcap, Magnet
 - Place them in the detector enclosure volume can place several ND components: ArgonCube, MPD and 3DST
 - Place the enclosure in the world volume Cavern made of rock (needed for background)
- For development
 - Perform first bullet then just place the detector into a world volume filled with Air.
- Important
 - Each volume has its own coordinates!
 - Enclosure defines position of the sub-detectors and world defines position of enclosure

World Volume

Details for the MPD

- Each sub-component are built individually
- For the ECAL Barrel
 - A global envelope is built first (octagonal barrel -Polyhedra Regular)
 - For each octant, the stave is built this is done to assign different names to staves (later used for segmentation purposes)
 - Each stave can be cut in smaller small modules along the x-axis
 - Each type of layer (pre-built) is then placed accordingly in the stave volume
 - The stave is then placed correctly into the envelope

MPD Detector

PV

Details for the MPD

- For the ECAL endcap
 - Similar Envelope is subtraction of two Polyhedra Regular
 - Each quadrant is the intersection of a Square and a Polyhedra Regular
 - Each quadrant can be divided in sub-modules in to be done
- For the pressure vessel
 - Similar thing endcap is intersection of cylinder and sphere
 - Something to improve her) too much space between PV endcap and ECAL endcap

Details for the MPD

- Layer details
 - Simple model of a layer inserted into the stave
 - Similar to previously envelope defines the layer volume, insert slices inside of material
 - No description of services/dead zones! once the design is fixed
 - No description of each individual tile or strip
 - Too much memory and file size would explode simple scintillator plane.
 - Segmentation in the digitisation phase
 - Several models of layers can be done and then inserted according to the config file (e.g High/Low granular layers have different structure)
- Current
 - 2 mm Cu / 5 mm Sc / 1 mm PCB (FR4)

MPD Simulation.

Handling of Geometry and running the G4 simulation

- MPD Software based on LArSoft → GArSoft
- Configured using fcl files
- Different services to handle different parts
 - Geometry
 - Detector properties
 - ...etc...
- Simulation based on LArSoft model
 - Load services load gdml, channel mapping, segmentation...
 - Call Generator module particle, GENIE etc...
 - Call GArG4 module run the simulation

MPD Simulation.

Handling of Geometry and running the G4 simulation

- GArG4
 - Begin job:
 - User limits: step size, regions, range cut
 - Material properties: i.e optical properties
 - Geometry: load gdml in G4
 - Physics list: pre-built or can be custom via fcl
 - User actions: filter particle to keep, energy deposits actions (user defined)
 - Produce:
 - Take generator particles pass them through G4 (G4Helper)
 - Get back particle list, energy deposits and put them into the event

```
garg4::MaterialPropertyLoader* MPL = new garg4::MaterialPropertyLoader();
MPL->GetPropertiesFromServices();
MPL->UpdateGeometry(store);
this->SetLimitsAndCuts();
fG4Help->InitPhysics();
```

```
fEDepAction = new garg4::EnergyDepositAction(&(*fEngine),
                                             fEDepActionPSet)
uaManager->AddAndAdoptAction(fEDepAction);
```

```
for(auto const& tpc : fEDepAction->EnergyDeposits()){
 LOG_DEBUG("GArG4")
<< "adding TPC deposits for track id: "</pre>
<< tpc.TrackID();
  TPCCol->emplace_back(tpc);
for(auto const& hit : fAuxDetAction->CaloDeposits())
LOG_DEBUG("GArG4")
 "adding calo deposits for track id: "
  << hit.TrackID();</pre>
ECALCol->emplace_back(hit);
```


MPD Simulation.

Particle Tracking in the MPD

- Tracking is handled by G4
- User specific tracking

 User Actions!
 - Used to create simulated hits
- Each MPD detector has its own user action function
 - TPC EnergyDepositAction
- User Actions can be configured with fcl parameters
- In each class, the Stepping Action is defined
 - Check the position (middle of the step), energy of the step
 - Check material in which the step is sensitive?
 - If sensitive save the step (energy, position, time, length, id...) into a vector
- Perform this for each particle until below a certain Ekin!
- Very modular! But can be long depending on the number of particles to track!

Saved for the ECAL

Integration into a common framework.

Ideas

- Need for a common framework in the ND simulation > Not possible to separate the simulations...
- Allows for detector interplay, optimisation...
- What are the needs in term of simulation?
- Possibilities:
 - Create a package specific for the ND simulation containing the common geometry, generators and simulation running code
 - Advantage: Independent of the framework after the simulation
 - Move all sub-detectors to the same framework
 - A lot of work for each sub-detector group depending on the framework chosen...

Conclusion.

Towards a common goal

- The geometry model for the MPD is well advanced and started to be under optimisation
- The simulation framework for the MPD is based on LArSoft, all integrated into a common framework GArSoft
- Going towards a common ND framework
 - Will allow interplay between detectors (i.e LAr/GAr matching...) and also optimisation
 - Common physics analyses?
 - Not so easy depending on the different sub-detector needs
 - Options:
 - Separate simulation/geometry and digitisation/reconstruction memory might be the easiest
 - Stick to one framework for all sub-detectors me might be quite some work
- To do list: https://docs.google.com/spreadsheets/d/1DhdW7R8iKR6Aar7AmC-4Lswt-z_Rvrlmx1bjAPQYa-A/edit? ts=5c58b34b#gid=1386834576
 - Simulation -> integrate other detectors?
 - Improve current and integrate particle reconstruction/identification algorithms (pi0 ...)
 - Improve calorimeter clustering
 - Add few physics benchmarks into the analysis
 - Develop calibration method

